Performance of CMIP6 HighResMIP on the Representation of Onset and Cessation of Seasonal Rainfall in Southern West Africa

Author:

Nkrumah FrancisORCID,Quagraine Kwesi Akumenyi,Quagraine Kwesi Twentwewa,Wainwright Caroline,Quenum Gandomè Mayeul Leger DavyORCID,Amankwah Abraham,Klutse Nana Ama Browne

Abstract

Changes in rainfall onset and cessation dates are critical for improving decision making and adaptation strategies in numerous socio-economic sectors. An objective method of determining onset and cessation date is employed over Southern West Africa (SWA) in this study. The method is applied over 34 years of the quasi-global rainfall dataset from the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) and five High Resolution Model Intercomparison Project (HighResMIP) model datasets under the Coupled Model Intercomparison Project Phase 6 (CMIP6) experiment. Generally, a strong agreement exists between CHIRPS and the HighResMIP models in capturing the behaviour of seasonal rainfall over SWA, with models able to capture the bimodal rainfall season. The ability of models in capturing onset and cessation dates as observed in CHIRPS shows the strength of these models in representing the short break between the two wet seasons that is otherwise known as the ‘Little Dry Season’. Patterns observed in the onset and cessation dates over the SWA region are consistent with the northward and southward displacement of the Intertropical Convergence Zone (ITCZ). The seasonal timing of the models shows good agreement with observations such that most mean onset/cessation dates agree within 26 days. While IPSL-CM6A-ATM-HR, a model among the five HighResMIPs used in the study, best agrees with CHIRPS in representing onset and cessation dates during the unimodal rainfall season, no one model best agrees with CHIRPS during the bimodal season, with models outperforming each other in representing onset/cessation dates with little variation.

Funder

Global Affairs Canada

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3