Experimental Study on the Dust-Cleaning Performance of New Structure Microporous Membrane Filter Plate

Author:

Chen Lumin,Liu Zhe,Sun Yi,Qian Fuping,Han Yunlong,Lu Jinli

Abstract

On the basis of the existing dust collector structure, this study designed a fan-shaped new structure microporous membrane filter plate (NSMMFP). The pressure distribution law of the NSMMFP can be obtained by measuring the wall surface peak pressure under different injection pressures. The powder attachment experiment was carried out to explore the influence of the dust moisture content on the dust stripping rate (DSR), and a high-speed camera was used to observe the peeling process of the dust. The results show that the peak pressure of each measuring point and the average wall surface peak pressure gradually increase with the injection pressure. The dust stripping quality (DSQ) and rate show an increasing trend as a whole as the injection distance. The DSR of the filter plate shows a downward trend when the dust quality G increases, while DSQ shows the opposite trend. Furthermore, as the dust moisture content increases, the DSQ and DSR gradually decrease. As the dust moisture content increases, the dust attached to the surface of the filter plate is more fragmented and peels from the surface of the filter plate during the dust cleaning process.

Funder

Anhui Provincial Scientific and Technological Major Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3