Analysis of the Influence of Convection Heat Transfer in Circular Tubes on Ships in a Polar Environment

Author:

Yu Dongwei,Zhang Dayong,Wu Lin,Kong Xiangyi,Yue Qianjin

Abstract

Electric heat tracing is the main measure for cold protection of the polar transfer coefficient in marine engineering equipment, but thermal equilibrium is the key problem this technology faces. In this paper, the circular tube was the research object. We studied the influence of convective heat transfer by Fluent software and experiments with a wind speed of 0–40 m/s and temperature of −40–0 °C by constant heat flux heating. The results show that the convective heat transfer increases with increased wind speed and decreased temperature. When the temperature is below −30 °C, the effect of temperature is increased; when the wind speed is greater than 25 m/s and the temperature is lower than −20 °C, the effect of temperature on the convective heat transfer coefficient of the circular tube increases. Based on the simulation data, we established a prediction model, and the rationality of the prediction model was verified by tests. The model provides reference for the design of electric heat tracing of circular tubes on polar ships.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference13 articles.

1. Numerical simulation of ice formation of polar offshore platform deck structure based on fluent and FENSAP-ICE;Shen;Polar Res.,2020

2. Status and development of anti freezing and deicing technology of ships;Lu;Ship Ocean. Eng.,2016

3. Electric trace heat design methods for de-icing and anti-icing of vessels, support equipment and infrastructure in the Arctic;Roeder,2017

4. Heat transfer from a heated non-rotating cylinder performing circular motion in a uniform stream

5. Numerical Analysis of Convective Heat Transfer of Horizontal Swept Circular Tube and Non-Circular Tube;Zhou,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3