Influence of Ambient Atmospheric Environments on the Mixing State and Source of Oxalate-Containing Particles at Coastal and Suburban Sites in North China

Author:

Zhao Yunhui,Zhang Yanjing,Li Xiaodong,Li Lei,Feng Limin,Xie Huan,Li Wenshuai,Liu Xiaohuan,Zhu Yujiao,Sheng LifangORCID,Qi Jianhua,Gao Huiwang,Zhou Zhen,Zhou Yang

Abstract

Photodegradation is a key process impacting the lifetime of oxalate in the atmosphere, but few studies investigated this process in the field due to the complex mixing and sources of oxalate. Oxalate-containing particles were measured via single-particle aerosol mass spectrometry at coastal and suburban sites in Qingdao, a coastal city in North China in the summer of 2016. The mixing state and influence of different ambient conditions on the source and photodegradation of oxalate were investigated. Generally, 6.3% and 12.3% of the total particles (by number) contained oxalate at coastal and suburban sites, respectively. Twelve major types of oxalate-containing particles were identified, and they were classified into three groups. Biomass burning (BB)-related oxalate–K and oxalate–carbonaceous particles were the dominant groups, respectively, accounting for 68.9% and 13.6% at the coastal site and 72.0% and 16.8% at the suburban site. Oxalate–Heavy metals (HM)-related particles represented 14.6% and 9.3% of the oxalate particles at coastal and suburban sites, respectively, which were mainly from industrial emissions (Cu-rich, Fe-rich, Pb-rich), BB (Zn-rich), and residual fuel oil combustion (V-rich). The peak area of oxalate at the coastal site decreased immediately after sunrise, while it increased during the daytime at the suburban site. However, the oxalate peak area of Fe-rich particles at both sites decreased after sunrise, indicating that iron plays an important role in oxalate degradation in both environments. The decay rates (k) of Fe-rich and BB-Fe particles at the coastal site (−0.978 and −0.859 h−1, respectively), were greater than those at the suburban site (−0.512 and −0.178 h−1, respectively), owing to the high-water content of particles and fewer oxalate precursors. The estimated k values of oxalate peak area for different ambient conditions were in the same order of magnitude, which can help establish or validate the future atmospheric models.

Funder

National Natural Science Foundation of China

National Key Basic Research Project of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3