Abstract
Here we apply new analysis methods and approaches to existing long-term measurement series that provide additional insights into the atmospheric processes that control black carbon (BC) in the Arctic. Based on clustering size distribution data from Zeppelin Observatory for the years 2002–2010, observations classified as ‘Polluted’ were further investigated based on BC properties. The data were split into two subgroups, and while the microphysical and chemical fingerprints of the two subgroups are very similar, they show larger differences in BC concentration and correlation with the particle size distribution. Therefore, a source–receptor analysis was performed with HYSPLIT 10-days backward trajectories for both subsets. We demonstrate that within this ‘Polluted’ category, the airmasses that contributed to the largest BC signal at the Zeppelin station are not necessarily associated with traditional transport pathways from Eurasia. Instead, the strongest signal is from a region east of the Ural Mountains across the continent to the Kamchatka Peninsula.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献