Abstract
With the advantages of high accuracy, high spatial resolution, and long measurement range, LiDAR is considered as the most suitable measurement technique to deliver quantitative imaging of wind fields. However, for complex wind fields, such as monitoring wind turbine wakes where both the temporal resolution and reconstruction speed are of great significance, the conventional LiDAR system lacks the temporal resolution to capture the fast changes of wind turbine wake fields. In this paper, a novel dynamic wind retrieval method is developed to improve temporal resolution using the unsynchronised dual-LiDAR scanning scheme. By exploiting the temporal redundancy information of the LiDAR Line-of-Sight (LoS) data in successive frames, a reduced number of LiDAR scanning points is required for the 2D horizontal wind field retrieval with the help of unsynchronised dual-LiDAR wind scanning scheme, low-rank data up-sampling and a divergence-free regularised wind retrieval algorithm. Numerical simulation is performed to validate the proposed method. Results show that the temporal resolution of LiDAR wind retrieval can be improved by a factor of 2 to 8 and provide acceptable results with good spatial resolution.
Funder
Engineering and Physical Sciences Research Council
Subject
Atmospheric Science,Environmental Science (miscellaneous)