On the Detection of Snow Cover Changes over the Australian Snowy Mountains Using a Dynamic OBIA Approach

Author:

Rasouli Aliakbar A.,Cheung Kevin K. W.ORCID,Mohammadzadeh Alajujeh Keyvan,Ji Fei

Abstract

This study detected the spatial changes in Snow Cover Area (SCA) over the Snowy Mountains in New South Wales, Australia. We applied a combination of Object-Based Image Analysis (OBIA) algorithms by segmentation, classification, and thresholding rules to extract the snow, water, vegetation, and non-vegetation land covers. For validation, the Maximum Snow Depths (MSDs) were collected at three local snow observation sites (namely Three Mile Dam, Spencer Creek, and Deep Creek) from 1984 to 2020. Multiple Landsat 5, 7, and 8 imageries extracted daily MSDs. The process was followed by applying an Estimation Scale Parameter (ESP) tool to build the local variance (LV) of object heterogeneity for each satellite scene. By matching the required segmentation parameters, the optimal separation step of the image objects was weighted for each of the image bands and the Digital Elevation Model (DEM). In the classification stage, a few land cover classes were initially assigned, and three different indices—Normalized Differential Vegetation Index (NDVI), Surface Water Index (SWI), and a Normalized Differential Snow Index (NDSI)—were created. These indices were used to adjust a few classification thresholds and ruleset functions. The resulting MSDs in all snow observation sites proves noticeable reduction trends during the study period. The SCA classified maps, with an overall accuracy of nearly 0.96, reveal non-significant trends, although with considerable fluctuations over the past 37 years. The variations concentrate in the north and south-east directions, to some extent with a similar pattern each year. Although the long-term changes in SCA are not significant, since 2006, the pattern of maximum values has decreased, with fewer fluctuations in wet and dry episodes. A preliminary analysis of climate drivers’ influences on MSD and SCA variability has also been performed. A dynamic indexing OBIA indicated that continuous processing of satellite images is an effective method of obtaining accurate spatial–temporal SCA information, which is critical for managing water resources and other geo-environmental investigations.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3