Contribution of Physical and Chemical Properties to Dithiothreitol-Measured Oxidative Potentials of Atmospheric Aerosol Particles at Urban and Rural Sites in Japan

Author:

Kurihara KazukiORCID,Iwata AyumiORCID,Murray Horwitz Samuel Gray,Ogane Kako,Sugioka Tomoki,Matsuki AtsushiORCID,Okuda TomoakiORCID

Abstract

Dithiothreitol-measured oxidative potential (OPDTT) can chemically quantify the adverse health effects of atmospheric aerosols. Some chemical species are characterized with DTT activities, and the particle diameter and surface area control DTT oxidizability; however, the physical contribution to OPDTT by atmospheric aerosols is controversial. Therefore, we performed field observations and aerosol sampling at urban and rural sites in Japan to investigate the effect of both physical and chemical properties on the variation in OPDTT of atmospheric aerosols. The shifting degree of the representative diameter to the ultrafine range (i.e., the predominance degree of ultrafine particles) was retrieved from the ratio between the lung-deposited surface area and mass concentrations. The chemical components and OPDTT were also elucidated. We discerned strong positive correlations of K, Mn, Pb, NH4+, SO42−, and pyrolyzable organic carbon with OPDTT. Hence, anthropogenic combustion, the iron–steel industry, and secondary organic aerosols were the major emission sources governing OPDTT variations. The increased specific surface area did not lead to the increase in the OPDTT of atmospheric aerosols, despite the existing relevance of the surface area of water-insoluble particles to DTT oxidizability. Overall, the OPDTT of atmospheric aerosols can be estimated by the mass of chemical components related to OPDTT variation, owing to numerous factors controlling DTT oxidizability (e.g., strong contribution of water-soluble particles). Our findings can be used to estimate OPDTT via several physicochemical parameters without its direct measurement.

Funder

Japan Society for the Promotion of Science

the cooperative research program of the Institute of Nature and Environmental Technology, Kanazawa University

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3