The Effects of Local Pollution and Transport Dust on Aerosol Properties in Typical Arid Regions of Central Asia during DAO-K Measurement

Author:

Wei YuanyuanORCID,Li ZhengqiangORCID,Zhang YingORCID,Li KaitaoORCID,Chen Jie,Peng Zongren,Hu QiaoyunORCID,Goloub PhilippeORCID,Ou YangORCID

Abstract

Dust aerosol has an impact on both the regional radiation balance and the global radiative forcing estimation. The Taklimakan Desert is the focus of the present research on the optical and micro-physical characteristics of the dust aerosol characteristics in Central Asia. However, our knowledge is still limited regarding this typical arid region. The DAO-K (Dust Aerosol Observation-Kashgar) campaign in April 2019 presented a great opportunity to understand further the effects of local pollution and transported dust on the optical and physical characteristics of the background aerosol in Kashgar. In the present study, the consistency of the simultaneous observations is tested, based on the optical closure method. Three periods dominated by the regional background dust (RBD), local polluted dust (LPD), and Taklimakan transported dust (TTD), are identified through the backward trajectories, combined with the dust scores from AIRS (Atmospheric Infrared Sounder). The variations of the optical and micro-physical properties of dust aerosols are then studied, while a direct comparison of the total column and near surface is conducted. Generally, the mineral dust is supposed to be primarily composed of silicate minerals, which are mostly very weakly absorbing in the visible spectrum. Although there is very clean air (with PM2.5 of 21 μg/m3), a strong absorption (with an SSA of 0.77, AAE of 1.62) is still observed during the period dominated by the regional background dust aerosol. The near-surface observations show that there is PM2.5 pollution of ~98 μg/m3, with strong absorption in the Kashgar site during the whole observation. Local pollution can obviously enhance the absorption (with an SSA of 0.72, AAE of 1.58) of dust aerosol at the visible spectrum. This is caused by the increase in submicron fine particles (such as soot) with effective radii of 0.14 μm, 0.17 μm, and 0.34 μm. The transported Taklimakan dust aerosol has a relatively stable composition and strong scattering characteristics (with an SSA of 0.86, AAE of ~2.0). In comparison to the total column aerosol, the near-surface aerosol has the smaller size and the stronger absorption. Moreover, there is a very strong scattering of the total column aerosol. Even the local emission with the strong absorption has a fairly minor effect on the total column SSA. The comparison also shows that the peak radii of the total column PVSD is nearly twice as high as that of the near-surface PVSD. This work contributes to building a relationship between the remote sensing (total column) observations and the near-surface aerosol properties, and has the potential to improve the accuracy of the radiative forcing estimation in Kashgar.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3