A Hybrid MPI/OpenMP Parallelization Scheme Based on Nested FDTD for Parametric Decay Instability

Author:

He LingleiORCID,Chen Jing,Lu Jie,Yan Yubo,Yang Jutao,Yuan Guang,Hao Shuji,Li Qingliang

Abstract

Parametric decay instability (PDI) generated in milliseconds is an important physical phenomenon in ionospheric heating. Usually, numerical simulations are used to study PDI mechanisms. They can intuitively investigate the generation and development process of PDI, which is necessary in experimental studies. When simulating the PDI phenomenon through the explicit finite-difference time-domain (FDTD), the spatial scale spans from kilometers to centimeters, and the time scale needs to meet the Courant–Friedrichs–Lewy condition. Simulating the PDI phenomenon is time-consuming and difficult due to the high spatial resolution and strict restriction on the discrete time step. Although a nested mesh technique can boost the computational efficiency, the application of a parallel strategy is imperative to further improve it. In this study, we present a hybrid Message Passing Interface (MPI)/OpenMP parallelization scheme to solve the above-mentioned problems. This scheme can achieve an adaptive calculation and automatic allocation of MPI tasks and OpenMP threads, proving its flexibility and portability. Under the EISCAT background parameters, the PDI phenomenon was simulated. The results of the wave mode conversion and intense localized turbulence were identical to those of the serial program. Furthermore, a new simulation example and the effect of the cavity depth on electrostatic waves and negative ion density cavity were investigated. By utilizing the proposed parallelization scheme, the simulation time can be reduced from 70 h for the serial program to 3.6 h.

Funder

China Postdoctoral Science Foundation

Foundation of the National Key Laboratory of the Electromagnetic Environment of China Elec-tronics Technology Group Corporation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compilation Optimization of DCU-oriented OpenMP Thread Scheduling;Journal of Physics: Conference Series;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3