The Effect of Metro Construction on the Air Quality in the Railway Transport System of Sydney, Australia

Author:

Larpruenrudee PuchaneeORCID,Surawski Nic C.ORCID,Islam Mohammad S.ORCID

Abstract

Sydney Metro is the biggest project of Australia’s public transport, which was designed to provide passengers with more trains and faster services. This project was first implemented in 2017 and is planned to be completed in 2024. As presented, the project is currently in the construction stage located on the ground stations of the Sydney Trains Bankstown line (T3). Based on this stage, several construction activities will generate air pollutants, which will affect the air quality around construction areas. Moreover, it might cause health problems to people around there and also the passengers who usually take the train on the T3 line. However, there is no specific data for air quality inside the train that may be affected by the construction from each area. Therefore, the aim of this study is to investigate the air quality inside the train carriage of all related stations from the T3 line. A sampling campaign was conducted over 3 months to analyze particulate matter (PM) concentration, the main indoor pollutants including formaldehyde (HCHO) and total volatile organic compounds (TVOC). The results of the T3 line were analyzed and compared to Airport & South line (T8) that were not affected by the project’s construction. The results of this study indicate that Sydney Metro construction activities insignificantly affected the air quality inside the train. Average PM2.5 and PM10 inside the train of T3 line in the daytime were slightly higher than in the nighttime. The differences in PM2.5 and PM10 concentrations from these periods were around 6.8 μg/m3 and 12.1 μg/m3, respectively. The PM concentrations inside the train from the T3 line were slightly higher than the T8 line. However, these concentrations were still lower than those recommended by the national air quality standards. For HCHO and TVOC, the average HCHO and TVOC concentrations were less than the recommendation criteria.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3