Intra-Seasonal Features of Winter Extreme Cold Events in Northeast–North China and Synergistic Effects of Circulation Systems in Mid-High Latitude

Author:

Gao QingjiuORCID,Wang LiORCID,Li Yan,Wang Yafei

Abstract

Based on the daily minimum air temperature (Tmin) data from the China Meteorological Data Network and the NCEP/DOE reanalysis data, the intra-seasonal circulation characteristics and evolution of extreme cold events (ECEs) in Northeast–North China (NE-N) during the winter of 1979–2018 are explored, and the synergistic effects of key circulation systems in the mid-high latitude on ECEs are discussed. The results show that: (1) the winter daily Tmin in the NE-N region presents a significant low-frequency period of 10–30 d; during the cooling phases, a pair of cyclone–anticyclone in the lower troposphere moves southeastward, accompanying the intensifying Siberian High, and leads to the abnormal northerly; the developing wave trains in the middle troposphere result in enhancing and maintaining cold air; furthermore, the situation of the upper tropospheric jet weakening in the north and strengthening in the south is favorable for cold air to move southward and accumulate in the NE-N region. (2) There are two wave trains in the Eurasian at 200 hPa level. The north one moves southeastward through the Ural Mountains to the coast of East Asia, with the upstream wave activity flux dispersing to NE-N region, causing the northeast cold vortex to develop. The south one with relatively weak intensity disperses the wave flux northward, and enhances the cold vortex. (3) The key circulation systems of ECEs are the Siberian High, the Ural Mountain Blocking High, the Northeast Cold Vortex, and the East Asian Subtropical Jet. The Ural Mountains Blocking High leads four phases earlier than low temperature, and the rest of the systems are basically in phase with low temperature. The synergistic effect of circulation systems will lead to extended-range cold in the NE-N region.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference59 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3