Length Scale Analyses of Background Error Covariances for EnKF and EnSRF Data Assimilation

Author:

Park Soon-Young,Dash Uzzal KumarORCID,Yu Jinhyeok

Abstract

Data assimilation (DA) combines incomplete background values obtained via chemical transport model predictions with observational information. Several 3-Dimensional variational (3DVAR) and sequential methods (e.g., ensemble Kalman filter (EnKF)) are used to define model errors and build a background error covariance (BEC) and are important factors affecting the prediction performance of DA. The BEC determines the spatial range, where observation concentration is reflected in the model when DA is applied to an air pollution transport model. However, studies investigating the characteristics of BEC using air quality models remain lacking. In this study, horizontal length scale (HLS) and vertical length scale (VLS) analyses of a BEC were applied to EnKF and ensemble square root filter (EnSRF), respectively, and two ensemble-based DA methods were performed; the characteristics were compared with those of a BEC applied to 3DVAR. The results of 6 h PM2.5 predictions performed for 42 days were evaluated for a control run without DA (CTR), 3DVAR, EnKF, and EnSRF. HLS and VLS respectively exhibited a high correlation with the ground wind speed and with the planetary boundary layer height for diurnal and daily variations; EnKF and EnSRF exhibited superior performances among all the methods. The root mean square errors were 11.9 μg m−3 and 11.7 μg m−3 for EnKF and EnSRF, respectively, while those for 3DVAR and CTR were 12.6 μg m−3 and 18.3 μg m−3, respectively. Thus, we proposed a simple method to find a Gaussian function that best described the error correlation of the BEC based on the physical distance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3