The Performance of ECMWF Ensemble Prediction System for European Extreme Fires: Portugal/Monchique in 2018

Author:

Durão RitaORCID,Alonso Catarina,Gouveia CéliaORCID

Abstract

At the beginning of August 2018, Portugal experienced a severe heat episode over a few days that consequently increased the probability of wildfire events. Due to the advection of an anomalous very hot and dry air mass, severe fire-prone meteorological conditions were forecasted mainly over southern Portugal, in the Monchique region. Together with the significant fuel amount accumulated since the last extreme wildfire in August 2003, all the unfavorable conditions were set to drive a severe fire over this region. The Monchique fire started on 3 August 2018, being very hard to suppress and lasting for seven days, with a burnt area of 27,000 ha. Regarding the need to have operational early warning tools, this work aims to evaluate the reliability of fire probabilistic products, up to 72 h ahead, together with the use of fire radiative power products, as support tools in fire monitoring and resource activities. To accomplish this goal, we used the fire probabilistic products of the Ensemble Prediction System, provided by the Copernicus Atmosphere Monitoring Service. Among available fire danger rating systems, the Fire Weather Index and the Fine Fuels Moisture Code of the Canadian Forest Fire Weather Index System were selected to assess the meteorological fire danger. The assessment of the fire intensity was based on the Fire Radiative Energy released, considering the Fire Radiative Power, delivered in near real-time, by EUMETSAT Land Surface Analysis Satellite Applications Facility. The exceptional fire danger over southern Portugal that favors the ignition of the Monchique fire and its severity was essential driven by two important factors: (i) the anomalous fire weather danger, before and during the event; (ii) the accumulated fuel amount, since the last severe event occurred in 2003, over the region. Results show that the selected fire probabilistic products described the meteorological fire danger observed well, and the LSA-SAF products revealed the huge amount of fire energy emitted, in line with the difficulties faced by authorities to suppress the Monchique fire.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3