Does Below-Above Canopy Air Mass Decoupling Impact Temperate Floodplain Forest CO2 Exchange?

Author:

Kowalska NataliaORCID,Jocher GeorgORCID,Šigut LadislavORCID,Pavelka MarianORCID

Abstract

Environmental conditions influence forest ecosystems and consequently, its productivity. Thus, the quantification of forest CO2 exchange is a critical requirement to estimate the CO2 balance of forests on a local and regional scale. Besides interpreting the annual CO2 exchange corresponding to environmental conditions over the studied years (2015–2020) at the floodplain forest in Lanžhot, Czech Republic (48.6815483 N, 16.9463317 E), the influence of below-above canopy air mass decoupling on above canopy derived CO2 exchange is the focus of this study. For this purpose, we applied the eddy covariance (EC) method above and below the forest canopy, assessing different single- and two-level flux filtering strategies. We focused on one example year (2019) of concurrent below and above canopy EC measurements. We hypothesized that conventional single-level EC flux filtering strategies such as the friction velocity (u*) filtering approach might not be sufficient to fully capture the forest CO2 exchange at the studied ecosystem. Results suggest that decoupling occurs regularly, but the implication on the above canopy derived EC CO2 fluxes appears to be negligible on an annual scale. We attribute this to the open canopy and flat EC tower surrounding terrain which inhibits horizontal removal of below-canopy respired CO2.

Funder

Ministry of Education, Youth and Sports of CR within the CzeCOS program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference55 articles.

1. Biodiversity of floodplain forests in Europe and eastern North America: A comparative study of the Rhine and Mississippi Valleys

2. Ramsar Convention on Wetlands. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People,2018

3. Potential tree and soil carbon storage in a major historical floodplain forest with disrupted ecological function

4. Wetlands, carbon, and climate change

5. Peatlands across the Globe. Chapter Two in Peatland Restoration and Ecosystem Services: Science, Policy and Practice;Joosten,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3