Design Hyetograph for Short-Duration Rainstorm in Jiangsu

Author:

Yang Jie,Xiang Ying,Xu Xiazhen,Sun Jiali

Abstract

The rainstorm intensity formula and the design of rainstorm hyetographs are important aspects in drainage design standards. Against the backdrop of climate change, in most cities in Jiangsu Province of China, significant trends of increasing intensities of heavy rainfall are apparent. The parameters of the rainstorm intensity formula are no longer applicable in the current context of significantly stronger rainstorms. To adapt to this change, we first contrasted the fitting accuracy of the Gumbel distribution, the exponential distribution, and the Pearson III distribution for the rainstorm intensity formula in Jiangsu. It was found that the Gumbel distribution has the smallest relative mean square error in most cities, proving that it provides the best estimation of rainstorm intensity formula parameters. Therefore, the rainstorm intensity formula parameters for 13 cities was revised using the Gumbel distribution based on the rainfall data from 1991 to 2020. Then, the precipitation with a 100-year return period was calculated using the revised formula. Moreover, to compensate for the lack of storm hyetographs that have been designed for Jiangsu, we designed short-duration rainstorm hyetographs for 13 cities using the Chicago hyetograph method and the Pilgrim and Cordery (PC) method. The results show that most of the short-duration rainstorms lasted between 45 and 120 min and were dominated by single-peaked patterns, with the peak position typically occurring in the first half of the rainfall cycle. The peak coefficient distribution of short-duration rainstorms shows that short-duration rainstorms in the south reached their peak rainfall intensity earlier than those in the north. On this basis, using the Chicago method and PC method, short-duration storm hyetographs were designed, which could be used in the design of drainage systems to provide support in effectively reducing urban flood threats. By comparing the hyetographs with real short-duration rainstorm patterns, it was found that the precipitation process designed using the PC method was most similar to the actual precipitation process. However, the PC method was found to be highly dependent on local precipitation data, whereas only the rain peak coefficient is required to design the Chicago rainstorm hyetograph. Therefore, we primarily recommend hyetographs designed using the PC method for Jiangsu Province’s 13 major cities, while we recommend the Chicago hyetograph for the surrounding areas of the 13 cities that have no meteorological stations or lack data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference34 articles.

1. Influential Factors of City Water Logging and Meteorological Service;Guo;J. Catastrophology,2003

2. Analysis of Influence of Design Rainfall Peak Cofficient on Design Flow of Drainage Pipeline Network;Li;Water Purif. Technol.,2015

3. The comparison of two different sampling schemes on design storm pattern by the Pilgrim & Cordery;Ma;Torrential Rain Disasters,2016

4. National Assessment Report of Climate Change (I): Climate change in China and its future trend;Ding;Adv. Clim. Chang. Res.,2006

5. Impacts of climate change on rainfall extremes and urban drainage systems: a review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3