A Rainfall Forecast Model Based on GNSS Tropospheric Parameters and BP-NN Algorithm

Author:

Fu Huanian,Zhang Wenfeng,Li Chunjin,Hu Zaihuang

Abstract

The occurrence of rainfall is the result of a combination of various meteorological factors. Traditional rainfall early warning models solely use Global Navigation Satellite System (GNSS)-derived Zenith Total Delay (ZTD) or Precipitable Water Vapor (PWV) to forecast rainfall, resulting in a low true detected rate. While non-linear rainfall early warning models based on the Back-Propagation Neural Network (BP-NN) algorithm consider the influences of various meteorological factors, the forecasts often exhibit a high false rate. To further improve the prediction of rainfall, a short-term rainfall early warning model based on the GNSS and BP-NN algorithms is proposed in this study. The method uses the traditional rainfall forecasting model and utilizes the BP-NN algorithm to combine various meteorological factors for rainfall early warning. The results of GNSS and BP-NN together improve the precision of rainfall early warning. Observation data from eight GNSS stations, the fifth-generation reanalysis of European Centre for Medium-Range Weather Forecast (ECMWF ERA5), and temperature, pressure, and rainfall data from corresponding meteorological stations in Ningbo, China were utilized to verify the rainfall early warning model proposed in this study. The results show that the proposed model can complement the advantages of the traditional linear and non-linear rainfall early warning methods. The model can maintain a high True Detected Rate (TDR) of rainfall early warning while simultaneously reducing the False Forecasted Rate (FFR). The average TDR of the eight GNSS stations is 100% and the FFR is 20.75%, which are both better than those of existing traditional linear and non-linear rainfall early warning models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3