Multiple Regression Analysis of Low Visibility Focusing on Severe Haze-Fog Pollution in Various Regions of China

Author:

Liu Zhaodong,Wang Hong,Peng Yue,Zhang WenjieORCID,Zhao Mengchu

Abstract

Visibility degradation is a pervasive environmental problem in winter in China and its prediction accuracy is therefore important, especially in low visibility conditions. However, current visibility parameterization algorithms tend to overestimate low visibility (<5 km) during haze–fog events. The key point of low visibility calculation and prediction depends on a reasonable understanding of the correlation between visibility, PM2.5 concentration, and relative humidity (RH). Using the observations of PM2.5 concentration and meteorology from December 2016 to February 2017, under different RH levels, the relative contribution differences of PM2.5 concentrations and RH to visibility degradation are investigated in depth. On this basis, new multiple nonlinear regressions for low visibility are developed for eight regions of China. The results show that under relatively low RH conditions (<80% or 85%), PM2.5 concentration plays a leading role in visibility changes in China. With the increase in RH (80–90% or 85–95%), the PM2.5 concentration corresponding to the visibility of 10 and 5 km decreases and the contribution of RH becomes increasingly important. When the RH grows to >95%, a relatively low PM2.5 concentration could also lead to visibility decreasing to <5 km. Within this range, the PM2.5 concentration corresponding to the visibility of 5 km in Central China (CC), Sichuan Basin (SCB), and Yangtze River Delta (YRD) is approximately 50, 50, and 30 μg m−3, and that in Beijing-Tianjin-Hebei (BTH) and Guanzhong Plain (GZP) is approximately 125 μg m−3, respectively. Specifically, based on these contribution differences, new multiple nonlinear regression equations of visibility, PM2.5 concentration, temperature, and dew point temperature of the eight regions (Scheme A) are established respectively after grouping the datasets by setting different RH levels (BTH, GZP, and North Eastern China (NEC): RH < 80%, 80 ≤ RH < 90% and RH ≥ 90%; CC, SCB, YRD, and South China Coastal (SCC): RH < 85%, 85 ≤ RH < 95% and RH ≥ 95%; Xinjiang (XJ): RH < 90% and RH ≥ 90%). According to the previous regression methods, we directly established the multiple regression models between visibility and the same factors as a comparison (Scheme B). Statistical results show that the advantage of Scheme A for 5 and 3 km evaluation is more significant compared with Scheme B. For the five low visibility regions (BTH, GZP, CC, SCB, and YRD), RMSEs of Scheme A under visibility <5 and 3 km are 0.77–1.01 and 0.48–0.95 km, 16–43 and 24–57% lower than those of Scheme B, respectively. Moreover, Scheme A reproduced the winter visibility in BTH, GZP, CC, SCB, YRD, and SCC from 2016 to 2020 well. The MAEs, MBs, and RMSEs under visibility < 5 km are 0.44–1.41, −1.33–1.24, and 0.58–2.36 km, respectively. Overall, Scheme A is confirmed to be reliable and applicable for low visibility prediction in many regions of China. This study provides a new visibility parameterization algorithm for the haze–fog numerical prediction system.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3