Evaluation of Water Vapor Product from TROPOMI and GOME-2 Satellites against Ground-Based GNSS Data over Europe

Author:

Vaquero-Martinez JavierORCID,Anton ManuelORCID,Chan Ka Lok,Loyola DiegoORCID

Abstract

A novel integrated water vapor (IWV) product from TROPOspheric Monitoring Instrument (TROPOMI) is validated together with a Global Ozone Monitoring Instrument-2 (GOME-2) standard product. As reference, ground-based Global Navigation Satellite Systems (GNSS) IWV data in 235 European stations from May 2018 to May 2019 are used. Under cloud free situations, a general comparison is carried out. It suggests that TROPOMI IWV exhibits less bias than GOME-2 and better results in the dispersion and regression parameters. Moreover, TROPOMI presents more homogeneous results along the different stations. However, TROPOMI is found to be overestimating the IWV uncertainties and being, therefore, too conservative in the confidence interval considered. The dependence of satellite product performance on several variables is also discussed. TROPOMI IWV shows wet bias of 5.7% or less for IWV < 10 mm (TROPOMI) and dry bias of up to −3% (TROPOMI). In contrast, GOME-2 shows wet bias of 30% or less for IWV < 25 mm (GOME-2) and dry bias of −12.3% for IWV > 25 mm. In addition, relative standard deviation (rSD) increases as IWV increases. In addition, the dependence on solar zenith angle (SZA) was also analyzed, as solar radiation bands are used in the retrieval algorithm of both instruments. Relative mean bias error (rMBE) shows positive values for GOME-2, slightly increasing with SZA, while TROPOMI shows more stable values. However, under high SZA, GOME-2 IWV exhibits a steep increase in rMBE (overestimation), while TROPOMI IWV exhibits a moderate decrease (underestimation). rSD is slightly increasing with SZA. The influence of cloudiness on satellite IWV observations is such that TROPOMI tends to overestimate IWV more as cloudiness increases, especially for high IWV. In the case of GOME-2, the rSD slightly increases with cloudiness, but TROPOMI rSD has a marked increase with increasing cloudiness. TROPOMI IWV is an important source of information about moisture, but its algorithm could still benefit from further improvement to respond better to cloudy situations.

Funder

Government of Extremadura

European Regional Development Fund

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3