Assessing the Impact of Cumulus Parameterization Schemes on Simulated Summer Wind Speed over Mainland China

Author:

Liu Si-Jie,Wang Ming,Yi Xiang,Shao Shuai-Bing,Zheng Yi-Qun,Zeng Xin-Min

Abstract

Wind speed is an important meteorological parameter, whose simulation is influenced by various physical process parameterizations. However, the impact of cumulus parameterization schemes (CPSs) on wind speed simulation at the climate scale has not been sufficiently investigated in previous studies. Using the Advanced Research version of the Weather Research and Forecasting model (ARWv3) and hydrostatic wind speed change equation, we assessed the effects of four CPSs on a 10 m wind speed simulation over mainland China in the summer of 2003. In general, different CPSs can reproduce the wind speed distribution. Meanwhile, the sensitivity of wind speed simulation to CPSs was found to be the highest in East and southern China, followed by the Tibetan Plateau, and then Northwest China. We found that the main physical processes influencing wind speed (i.e., the pressure gradient (PRE), diffusion (DFN), and convection (CON) terms) vary greatly with sub-regions. CPSs mainly affect the secondary CON that regulates the balance between the dominant terms PRE and DFN, and also has a significant effect on PRE. For example, for CON, the difference index (DIF) between the Kain–Fritsch (KF) and previous KF (pKF) CPSs is larger than 20%, corresponding to a PRE DIF of about 14%. The term of local wind speed change (Vt) is significantly more sensitive to the CPSs than the other terms with a DIF of 283% over the Tibetan Plateau, suggesting high CPS sensitivity of the simulated wind speed. In addition, we explained the causes of the CPS-induced sensitivities. This work helps understand the Weather Research and Forecasting model (WRF) performance and emphasizes the importance of the CPS choice in simulating/forecasting wind speed.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3