Response of Potential Evapotranspiration to Warming and Wetting in Northwest China

Author:

Zhu Biao,Zhang Qiang,Yang Jin-Hu,Li Chun-Hua

Abstract

In the last few decades, the climate in Northwest China has exhibited a warming–wetting tendency, which has been particularly prominent since the beginning of the 21st century. In this context, we analyzed the change in potential evapotranspiration (PET)in the corresponding period and its response to warming and wetting, which revealed clear periodic changes. The most significant changes occurred in the 1970s and 1980s, when PET decreased in the humid climate zone and increased in the semi-arid climate zone. Factor effect analysis showed that PET had a positive response to temperature; the highest and lowest temperatures in the region continued to rise. Relative humidity reduced the overall PET in the region, especially in the humid zone. Sunshine duration has continued to decrease rapidly since the 1980s, especially in humid and arid zones, resulting in a corresponding decrease in PET. Similarly, corresponding to the consistent wind speed decrease, there has also been a significant decrease in PET, with the largest decrease in the arid zone, followed by the humid zone. In general, PET in the central and eastern parts of Northwest China has mainly been affected by the temperature, whereas wind speed has been the main factor in the western part of the region. Relative humidity and sunshine duration have had relatively little effect on the PET (below 20% in most places). The reasons and processes that affect PET are very complicated. Owing to the unique climate characteristics and underlying surface energy mechanisms in Northwest China, it is still difficult to offer a scientific explanation for its warming and wetting. Therefore, the extent to which PET impacts climate change in this region is currently unclear, and systematic and scientific research on this is needed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3