Simulated Methane Emission Detection Capabilities of Continuous Monitoring Networks in an Oil and Gas Production Region

Author:

Chen QiningORCID,Modi MrinaliORCID,McGaughey Gary,Kimura Yosuke,McDonald-Buller Elena,Allen David T.

Abstract

Simulations of the atmospheric dispersion of methane emissions were created for a region containing 26 oil and gas production sites in the Permian Basin in Texas. Virtual methane sensors were placed at 24 of the 26 sites, with at most 1 sensor per site. Continuous and intermittent emissions from each of the 26 oil and gas production sites, over 4 week-long meteorological episodes, representative of winter, spring, summer, and fall meteorology, were simulated. The trade-offs between numbers of sensors and precision of sensors required to reliably detect methane emissions of 1 to 10 kg/h were characterized. A total of 15 sensors, able to detect concentration enhancements of 1 ppm, were capable of identifying emissions at all 26 sites in all 4 week-long meteorological episodes, if emissions were continuous at a rate of 10 kg/h. More sensors or sensors with lower detection thresholds were required if emissions were intermittent or if emission rates were lower. The sensitivity of the required number of sensors to site densities in the region, emission dispersion calculation approaches, meteorological conditions, intermittency of the emissions, and emission rates, were examined. The results consistently indicated that, for the conditions in the Permian Basin, a fixed monitoring network with approximately one continuous monitor per site is likely to be capable of consistently detecting site-level methane emissions in the range of 5–10 kg/h.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference13 articles.

1. Methane Guiding Principles, Reducing Methane Emissions Best Practice Guide: Identification, Detection, Measurement and Quantification https://methaneguidingprinciples.org/wp-content/uploads/2020/09/Reducing-Methane-Emissions_Identification-Detection-Measurement-and-Quantification_Guide.pdf

2. Permian Basin Information (Website) https://www.rrc.state.tx.us/oil-gas/major-oil-and-gas-formations/permian-basin-information

3. Quantifying methane emissions from the largest oil-producing basin in the United States from space

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3