Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment

Author:

Menacherry Sunil Paul M.ORCID,Aravind Usha K.,Aravindakumar Charuvila T.ORCID

Abstract

The elimination of organic contaminants from natural resources is extremely important to ensure their (re-)usability. In this report, the degradation of a model pharmaceutical compound, theophylline, is compared between natural and laboratory-controlled environments. While the concentration of H2O2 variably affected the degradation efficiency (approximately from 8 to 20 min for complete degradation) in the photo-irradiation experiments, the inorganic compounds (NaNO3, KH2PO4 and ZnSO4) present in the medium seemed to affect the degradation by scavenging hydroxyl radicals (•OH). The end-product studies using high-resolution mass spectrometry (HRMS) ruled out the involvement of secondary radicals in the degradation mechanism. The quantitative calculation with the help of authentic standards pointed out the predominant role of hydroxylation pathways, especially in the initial stages. Although a noticeable decline in the degradation efficiency was observed in river water samples (complete degradation after 25 min with an approximately 20% total organic carbon (TOC) removal), appreciable TOC removal (70%) was eventually achieved after prolonged irradiation (1 h) and in the presence of additional H2O2 (5 times), revealing the potential of our technique. The results furnished in this report could be considered as a preliminary step for the construction of •OH-based wastewater treatment methodologies for the remediation of toxic pollutants from the real environment.

Funder

UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata

European Regional Development Fund

Kerala State Council for Science, Technology and Environment

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3