Compositions, Sources, and Aging Processes of Aerosol Particles during Winter Hazes in an Inland Megacity of NW China

Author:

Liu PengjuORCID,Shao LongyiORCID,Li Yaowei,Wang Wenhua,Zhang Mengyuan,Yang Cheng-Xue,Niu Hongya,Feng Xiaolei,Zhang Daizhou

Abstract

As one of the largest inland megacities in Northwest (NW) China, Xi’an has been facing serious regional haze frequently, especially during winter. The composition of aerosols in Xi’an is highly complex due to its unique basinal topography and unique meteorological conditions. In this study, we characterized the morphology, size, and composition of individual aerosol particles collected during regional haze events at an urban site in Xi’an using Transmission Electron Microscopy (TEM) coupled with Energy-Dispersive X-ray Spectrometry (EDX). Six types of particles were identified based on their morphology and chemical composition, including organic (41.88%), sulfate (32.36%), soot (8.33%), mineral (7.91%), K-rich (5.13%), and fly ash particles (4.49%). These results demonstrate that the organic particles made a larger contribution to haze formation than the secondary inorganic particles during the sampling period. Size distribution and dominance suggest that organic and sulfate particles exert major control on the variation trends of particle size in haze. The coating thickness of organic-cored particles was about 369 nm and that of sulfate-cored particles was about 322 nm, implying that the organic particles were more aged than the sulfate particles. The results presented in this study provide further insights into understanding haze particle formation.

Funder

Longyi Shao

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3