N/P Addition Is More Likely Than N Addition Alone to Promote a Transition from Moss-Dominated to Graminoid-Dominated Tundra in the High-Arctic

Author:

Gignac CharlesORCID,Rochefort Line,Gauthier Gilles,Lévesque Esther,Maire Vincent,Deschamps Lucas,Pouliot Rémy,Marchand-Roy Mylène

Abstract

Nutrient availability for tundra vegetation could change drastically due to increasing temperatures and frequency of nitrogen deposition in the Arctic. Few studies have simultaneously examined the response of plant communities to these two pressures over a long period. This study aims to assess which driver between increasing nitrogen (N) and phosphorus (P) availability through global warming and increasing N availability alone via N deposition is more likely to transform arctic wetland vegetation and whether there is a time lag in this response. An annual fertilization experiment simulating these nutrient inputs was conducted for 17 years in the Canadian High-Arctic to assess the impact on aboveground net primary productivity, floristic composition, and plant nutrient concentration. While the primary productivity of mosses remains unchanged by fertilization after 17 years, productivity of graminoids was increased slightly by N addition (36% increase at the highest dose). In contrast, the primary productivity of graminoids increased strongly with N/P addition (over 227% increase). We noted no difference in graminoid productivity between the 2nd and 5th year of the experiment, but we observed a 203% increase between the 5th and 17th year in the N/P addition treatments. We also noted a 49% decrease in the total moss cover and an 155% increase in the total graminoid cover between the 2nd and 17th year of N/P addition. These results indicate that the impact of warming through increased N/P availability was greater than those of N deposition alone (N addition) and promoted the transition from a moss-dominated tundra to a graminoid-dominated tundra. However, this transition was subject to a time lag of up to 17 years, suggesting that increased productivity of graminoids resulted from a release of nutrients via the decomposition of lower parts of the moss mat.

Funder

Fonds de Recherche du Québec - Nature et Technologies

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference113 articles.

1. Arctic Animal Ecology;Remmert,1980

2. Soils of the Polar Landscapes;Tedrow,1977

3. Decomposition and accumulation of organic matter in tundra;Heal,1981

4. Temperature controls of microbial respiration in arctic tundra soils above and below freezing

5. Environmental responses of plants and ecosystems as predictors of the impact of global change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3