Particulate Matter Ionic and Elemental Composition during the Winter Season: A Comparative Study among Rural, Urban and Remote Sites in Southern Italy

Author:

Chianese ElenaORCID,Tirimberio Giuseppina,Dinoi AdelaideORCID,Cesari DanielaORCID,Contini DanieleORCID,Bonasoni PaoloORCID,Marinoni AngelaORCID,Andreoli Virginia,Mannarino Valentino,Moretti Sacha,Naccarato AttilioORCID,Sprovieri FrancescaORCID,Ammoscato IvanoORCID,Calidonna Claudia R.ORCID,Gullì Daniel,Riccio AngeloORCID

Abstract

We present an overview of the concentrations and distributions of water-soluble ion species and elemental components in ambient particulate matter for five measurement sites in southern Italy with the aim of investigating the influence of the different site characteristics on PM levels. The sites encompass different characteristics, ranging from urban to coastal and high-altitude remote areas. PM10 and PM2.5 fractions were collected simultaneously using dual channel samplers during the winter period from November 2015 to January 2016 and analyzed for water-soluble ion species, using ion chromatography, and elemental composition, using inductively coupled plasma mass spectrometry (ICP-MS). In all sites, PM2.5 represented the higher contribution to particulate mass, usually more than two times that of the coarse fraction (PM2.5−10). At the coastal site in Capo Granitola (Western Sicily), sea salts constituted about 30% of total PM10 mass. On average, ion species accounted for 30% to 60% of total PM10 mass and 15% to 50% of PM2.5 mass. We found that secondary ion species, i.e., SO42−, NO3− and NH4+ dominated the identifiable components within both PM2.5 and PM10 fractions. The chlorine–sodium ratio was usually lower than that expected from the natural level in sea salt, evidencing aged air masses. At the monitoring site in Naples, a highly urbanized area affected by high levels of anthropogenic source emissions, an increased contribution of ammonium was found, which was imputed to the increased ammonia emissions from industrial combustion sources and road traffic. The concentrations of the investigated elements showed noteworthy differences from one site to another. The PM10 fraction was highly enriched by sources of anthropogenic origin in the samples from the most urbanized areas. In general, the enrichment factors of the elements were similar between the PM10 and PM2.5 fractions, confirming common sources for all elements.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference81 articles.

1. Climate change projections for the Mediterranean region

2. Spatiotemporally resolved ambient particulate matter concentration by fusing observational data and ensemble chemical transport model simulations

3. Modeling and characterization of air pollution: Perspectives and recent developments with a focus on the Campania region (Southern Italy);Agrillo;Int. J. Environ. Res.,2013

4. Ecological effects of particulate matter

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3