Effects of Environmental Relative Vorticity and Seasonal Variation on Tropical Cyclones over the Western North Pacific

Author:

Wu Yusi,Chen ShuminORCID,Zhou Mingsen,Chen YilunORCID,Zhang Aoqi,Tu Chaoyong,Li Weibiao

Abstract

An improved understanding of the environmental factors influencing tropical cyclones (TCs) is vital to enhance the accuracy of forecasting TC intensity. More than half of TCs that were substantially affected by environmental factors were predominantly affected by low-level environmental relative vorticity (hereafter, VOR TCs). In this study, the seasonal variation and related physical features of VOR TCs from 2003–2017 during TC seasons in summer and autumn over the western North Pacific were analyzed. Autumn VOR TCs exhibited the strongest intensity among all TCs over the western North Pacific. The enhanced environmental relative vorticity during the TC intensification period was larger and more favorably distributed for VOR TC development in autumn. The vorticity diagnostic analysis showed that the convergence was the positive source of environmental relative vorticity of VOR TCs, while the contribution of convergence was larger in autumn than in summer. The increased convergence was related to seasonal variation in larger-scale systems, especially the higher environmental pressure gradient, which reflected the larger subtropical high and the compressed East Asian summer monsoon trough in autumn. In addition, the East Asian summer monsoon trough was also somewhat stronger during the intensification period of VOR TCs, especially in autumn.

Funder

Key Research and Development Projects in Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3