Author:
Choi Hyojeong,Sunwoo Young
Abstract
Agricultural activity greatly contributes to the secondary PM2.5 concentrations by releasing relatively large amounts of ammonia emissions. Nonetheless, studies and air quality policies have traditionally focused on industrial emissions such as NOx and SOx. To compare them, this study used a three-dimensional modeling system (e.g., WRF/CMAQ) to estimate the effects of emission control policies of agricultural and industrial emissions on PM2.5 pollution in Chungcheong, an agriculturally active region in Korea. Scenario 1 (S1) was designed to estimate the effect of a 30% reduction in NH3 emissions from the agro-livestock sector on air pollution. Scenario 2 (S2) was designed to show the air quality under a mitigation policy on NOx, SOx, VOCs, and primary PM2.5 from industrial sources, such as power plants and factories. The results revealed that monthly mean PM2.5 in Chungcheong could decrease by 3.6% (1.1 µg/m3) under S1 with agricultural emission control, whereas S2 with industrial emission control may result in only a 0.7~1.1% improvement. These results indicate the importance of identifying trends of multiple precursor emissions and the chemical environment in the target area to enable more efficient air quality management.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献