The Reaction of HO2 and CH3O2: CH3OOH Formed from the Singlet Electronic State Surface

Author:

Nguyen Thanh LamORCID,Stanton John F.

Abstract

High-level coupled-cluster calculations in combination with two-dimensional master equation simulations were used to study the HO2 + CH3O2 reaction, which plays an important role in the oxidation of methane and hydrocarbons in the Earth’s atmosphere and low-temperature combustion. The main reaction pathways taking place on the lowest-lying triplet and singlet potential energy surfaces (PES) were characterized. Interestingly, methyl hydroperoxide (CH3OOH), the sole product, could be produced from both the triplet and singlet PESs, with a ratio of roughly 9:1. Formaldehyde is not made as a primary product, but can be formed via secondary chemistry. The formation of methyl tetraoxide (MTO) from the singlet PES is unimportant. The calculated reaction rate coefficients were found to be practically pressure-independent for p ≤ 760 Torr and can be given by k(T)=2.75×10−13×e+1.75 kcal mol−1/RT (in cm3/s), an expression useful for kinetics modeling over the range T = 200–800 K. The rate constant has a slight negative Arrhenius energy dependence of about −1.75 kcal mol–1, falling about a factor of 30 from 200 K to 800 K.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3