Precipitable Water Content Climatology over Poland

Author:

Ojrzyńska HannaORCID,Błaś MarekORCID,Kryza MaciejORCID

Abstract

In this work, the high-resolution spatial and temporal variability of precipitable water (PW) over Poland is presented. PW is one of the key parameters of the atmosphere taken into account in thermodynamic and radiation models. The daily PW values from years 2001–2010, calculated with the use of the WRF model, were compared with PW from soundings. The WRF modeled PW is in close agreement with measurements for the whole column of the troposphere and for individual levels: below 1.5 km, 1.5–3 km, 3–6 km and 6–10 km. The best agreement is observed in the lower part of the troposphere, especially for winter months. At the levels of 1.5 km to 10 km, the WRF model overestimates the PW values throughout the year, whereas up to 1.5 km PW is underestimated. The study shows an increasing trend of PW annual values between 1983 and 2010, but the trend is statistically insignificant. A significant positive trend with a high Sen’s slope is observed for the summer season up to 3 km in the troposphere, along with a significant negative tendency for spring. The trends in PW over Poland and Central Europe identified in this study contribute to the ongoing discussion on the observed climate changes.

Funder

National Science Center

European Union's Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference94 articles.

1. Precipitable Water http//glossary.ametsoc.org/wiki/Precipitable_water

2. Precipitable water vapor and its relationship with the Standardized Precipitation Index: ground-based GPS measurements and reanalysis data

3. Seasonal and annual precipitation efficiency in Canada

4. Correlation between precipitable water and rainfall using global positioning system (GPS) technique;Fadil,2006

5. Impact of increased water vapor on precipitation efficiency over northern Eurasia

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3