The Controlling of the Subtropical High Leading Modes on the Spatial Pattern of Tropical Cyclone Genesis in the Western North Pacific and Tracks Landing on the East Coast of China

Author:

Fan Tingting,Yang Yuxing,Xu ShibinORCID

Abstract

As a prime circulation system, the western Pacific subtropical high (WPSH) significantly impacts tropical cyclone (TC) activities over the western North Pacific (WNP), especially TCs landing on the east coast of China; however, the associated mechanism is not firmly established. This study investigates the underlying dynamic impact of the first two empirical orthogonal function (EOF) modes of the WPSH on the interannual variability in the genesis and number of TCs landing over the WNP. The results show that these two dominant modes control the WNP TC activity over different subregions via different environmental factors. The first mode (EOF1) affects the TC genesis number over region I (105°–128° E, 5°–30° N) (r = −0.49) and region II (130°–175° E, 17°–30° N) (r = −0.5) and controls the TCs landing on the east coast of China, while the second mode (EOF2) affects the TC genesis number over region III (128°–175° E, 5°–17° N) (r = −0.69). The EOF1 mode, a southwest-northeast-oriented enhanced pattern, causes the WPSH to expand (retreat) along the southwest-northeast direction, which makes both mid-low-level relative humidity and low-level vorticity unfavorable (favorable) for TC genesis in region I and region II and steers fewer (more) TC tracks to land on the coast of China. The EOF2 mode features a strengthened WPSH over the southeast quarter of the WNP region. The active (inactive) phases of this mode control the low-level vorticity and vertical wind shear in region III, which lead to less (more) TC genesis over this region. The prediction equations combining the two modes of the WPSH for the total number of TCs and TCs that make landfall show high correlation coefficients. Our findings verify the high prediction skill of the WPSH on WNP TC activities, provide a new way to predict TCs that will make landfall on the east coast of China, and help to improve the future projection of WNP TC activity.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3