Abstract
Fine particulate matter (PM2.5) affects climate change and human health. Therefore, the prediction of PM2.5 level is particularly important for regulatory planning. The main objective of the study is to predict PM2.5 concentration employing an artificial neural network (ANN). The annual change in PM2.5 in Liaocheng from 2014 to 2021 shows a gradual decreasing trend. The air quality in Liaocheng during lockdown and after lockdown periods in 2020 was obviously improved compared with the same periods of 2019. The ANN employed in the study contains a hidden layer with 6 neurons, an input layer with 11 parameters, and an output layer. First, the ANN is used with 80% of data for training, then with 10% of data for verification. The value of correlation coefficient (R) for the training and validation data is 0.9472 and 0.9834, respectively. In the forecast period, it is demonstrated that the ANN model with Bayesian regularization (BR) algorithm (trainbr) obtained the best forecasting performance in terms of R (0.9570), mean absolute error (4.6 μg/m3), and root mean square error (6.6 μg/m3), respectively. The ANN model has produced accurate results. These results prove that the ANN is effective in monthly PM2.5 concentration predicting due to the fact that it can identify nonlinear relationships between the input and output variables.
Funder
National Natural Science Foundation of China
Shandong Province Higher Educational Humanities and Social Science Program
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献