Comparison of Wildfire Meteorology and Climate at the Adriatic Coast and Southeast Australia

Author:

Tomašević Ivana Čavlina,Cheung Kevin K. W.ORCID,Vučetić Višnjica,Fox-Hughes PaulORCID

Abstract

Wildfire is one of the most complex natural hazards. Its origin is a combination of anthropogenic factors, urban development and weather plus climate factors. In particular, weather and climate factors possess many spatiotemporal scales and various degrees of predictability. Due to the complex synergy of the human and natural factors behind the events, every wildfire is unique. However, there are indeed common meteorological and climate factors leading to the high fire risk before certain ignition mechanismfigures occur. From a scientific point of view, a better understanding of the meteorological and climate drivers of wildfire in every region would enable more effective seasonal to annual outlook of fire risk, and in the long term, better applications of climate projections to estimate future scenarios of wildfire. This review has performed a comparison study of two fire-prone regions: southeast Australia including Tasmania, and the Adriatic coast in Europe, especially events in Croatia. The former is well known as part of the ‘fire continent’, and major resources have been put into wildfire research and forecasting. The Adriatic coast is a region where some of the highest surface wind speeds, under strong topographic effect, have been recorded and, over the years, have coincided with wildfire ignitions. Similar synoptic background and dynamic origins of the meso-micro-scale meteorological conditions of these high wind events as well as the accompanied dryness have been identified between some of the events in the two regions. We have also reviewed how the researchers from these two regions have applied different weather indices and numerical models. The status of estimating fire potential under climate change for both regions has been evaluated. This review aims to promote a global network of information exchange to study the changing anthropogenic and natural factors we have to confront in order to mitigate and adapt the impacts and consequences from wildfire.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3