Evaluating the Atmospheric Loss of H2 by NO3 Radicals: A Theoretical Study

Author:

Romanias Manolis N.ORCID,Nguyen Thanh LamORCID

Abstract

Molecular hydrogen (H2) is now considered among the most prominent substitute for fossil fuels. The environmental impacts of a hydrogen economy have received more attention in the last years, but still, the knowledge is relatively poor. In this work, the reaction of H2 with NO3 radical (the dominant night-time detergent of the atmosphere) is studied for the first time using high-level composite G3B3 and modification of high accuracy extrapolated ab initio thermochemistry (mHEAT) methods in combination with statistical kinetics analysis using non-separable semi-classical transition state theory (SCTST). The reaction mechanism is characterized, and it is found to proceed as a direct H-abstraction process to yield HNO3 plus H atom. The reaction enthalpy is calculated to be 12.8 kJ mol−1, in excellent agreement with a benchmark active thermochemical tables (ATcT) value of 12.2 ± 0.3 kJ mol−1. The energy barrier of the title reaction was calculated to be 74.6 and 76.7 kJ mol−1 with G3B3 and mHEAT methods, respectively. The kinetics calculations with the non-separable SCTST theory give a modified-Arrhenius expression of k(T) = 10−15 × T0.7 × exp(−6120/T) (cm3 s−1) for T = 200–400 K and provide an upper limit value of 10−22 cm3 s−1 at 298 K for the reaction rate coefficient. Therefore, as compared to the main consumption pathway of H2 by OH radicals, the title reaction plays an unimportant role in H2 loss in the Earth’s atmosphere and is a negligible source of HNO3.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

1. Intergovernmental Panel on Climate Change (IPCC) Report https://www.unep.org/resources/report/climate-change-2021-physical-science-basis-working-group-i-contribution-sixth

2. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective

3. Hydrogen Energy and Fuel Cells: A Vision of Our Future: Final Report of the High Level Group,2003

4. Resource constraints in a hydrogen economy based on renewable energy sources: An exploration

5. Potential Environmental Impact of a Hydrogen Economy on the Stratosphere

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3