Prediction of NOx Concentration at SCR Inlet Based on BMIFS-LSTM

Author:

Song Meiyan,Xue Jianzhong,Gao Shaohua,Cheng Guodong,Chen Jun,Lu Haisong,Dong Ze

Abstract

As the main energy source for thermal power generation, coal generates a large amount of NOx during its incineration in boilers, and excessive NOx emissions can cause serious pollution to the air environment. Selective catalytic reduction denitrification (SCR) selects the optimal amount of ammonia to be injected for denitrification based on the measurement of NOx concentration by the automatic flue gas monitoring system. Since the automatic flue gas monitoring system has a large delay in measurement, it cannot accurately reflect the real-time changes of NOx concentration at the SCR inlet when the unit load fluctuates, leading to problems such as ammonia escape and NOx emission exceeding the standard. In response to these problems, this paper proposes an SCR inlet NOx concentration prediction algorithm based on BMIFS-LSTM. An improved mutual information feature selection algorithm (BMIFS) is used to filter out the auxiliary variables with maximum correlation and minimum redundancy with NOx concentration, and reduce the coupling and dimensionality among the variables in the data set. The dominant and auxiliary variables are then fed together into a long short-term memory neural network (LSTM) to build a prognostic model. Simulation experiments are conducted using historical operation data of a 300 MW thermal power unit. The experimental results show that the algorithm in this paper reduces the average relative error by 3.45% and the root mean square error by 1.50 compared with the algorithm without auxiliary variable extraction, which can accurately reflect the real-time changes of NOx concentration at the SCR inlet, solve the problem of delay in NOx concentration measurement, and reduce the occurrence of atmospheric pollution caused by excessive NOx emissions.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference26 articles.

1. The Economics of Low-NOx Technology and the Exploration of New Low-NOx Control Technology;Zhong,2006

2. Influence of low-load flue gas recirculation on combustion and NOx emissions of pulverized coal boilers;Liu;Chin. J. Power Eng.,2021

3. Long Short-Term Memory

4. Adam: A method for stochastic optimization;Kingma;arXiv,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3