Evaluation of the Wind Environment around Multiple Urban Canyons Using Numerical Modeling

Author:

Son Minu,Lee Jeong-In,Kim Jae-JinORCID,Park Soo-JinORCID,Kim DaegiORCID,Kim Do-Yong

Abstract

This study aimed to evaluate the wind environment in step-up and step-down urban canyons through a computational numerical experiment using the computational fluid dynamics (CFD) model. Spatial structural conditions were considered according to the location of high-rise buildings, and the changing wind patterns inside canyons were compared and analyzed by varying the building heights. Under the step-up to step-down condition, wind velocity inside the canyon weakened, a vertical vortex formed, and vertical air flow separated; additionally, in shallow and deep canyons, wind velocity and detailed flow differed slightly according to each additional condition. For the step-down to step-up condition, the building located in the center appeared to be isolated, and a general wind environment phenomenon consistent with the step-up and step-down structures was observed. However, depending on the isolated area, an additional roof-top canyon was formed, and the wind field in the canyon was found to affect the wind velocity and detailed flow in other canyons. The wind velocity components of the inflow and outflow winds into the canyon differed based on the step-up to step-down or step-down to step-up conditions, and according to the conditions in the first and second canyons. Furthermore, the vertical wind velocity components were greatly affected by the step-up and step-down structures. Accordingly, the height and structural location of the building could affect various phenomena, such as the separation of vortices and air currents inside the canyon, and a variable wind environment was formed according to a series of conditions for the building.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3