Study on the Associations between Meteorological Factors and the Incidence of Pulmonary Tuberculosis in Xinjiang, China

Author:

Gao Chunjie,Wang Yingdan,Hu ZengyunORCID,Jiao Haiyan,Wang Lei

Abstract

Pulmonary tuberculosis (PTB) has been a major threat to global public health. The association between meteorological factors and the incidence of PTB has been widely investigated by the generalized additive model, auto-regressive integrated moving average model and the distributed lag model, etc. However, these models could not address a non-linear or lag correlation between them. In this paper, a penalized distributed lag non-linear model, as a generalized and improved one, was applied to explore the influence of meteorological factors (such as air temperature, relative humidity and wind speed) on the PTB incidence in Xinjiang from 2004 to 2019. Moreover, we firstly use a comprehensive index (apparent temperature, AT) to access the impact of multiple meteorological factors on the incidence of PTB. It was found that the relationships between air temperature, relative humidity, wind speed, AT and PTB incidence were nonlinear (showed “wave-type “, “invested U-type”, “U-type” and “wave-type”, respectively). When air temperature at the lowest value (−16.1 °C) could increase the risk of PTB incidence with the highest relative risk (RR = 1.63, 95% CI: 1.21–2.20). An assessment of relative humidity demonstrated an increased risk of PTB incidence between 44.5% and 71.8% with the largest relative risk (RR = 1.49, 95% CI: 1.32–1.67) occurring at 59.2%. Both high and low wind speeds increased the risk of PTB incidence, especially at the lowest wind speed 1.4 m/s (RR = 2.20, 95% CI: 1.95–2.51). In particular, the lag effects of low and high AT on PTB incidence were nonlinear. The lag effects of extreme cold AT (−18.5 °C, 1st percentile) on PTB incidence reached a relative risk peak (RR = 2.18, 95% CI: 2.06–2.31) at lag 1 month. Overall, it was indicated that the environment with low air temperature, suitable relative humidity and wind speed is more conducive to the transmission of PTB, and low AT is associated significantly with increased risk of PTB in Xinjiang.

Funder

Natural Science Foundation of Xinjiang

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3