Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review

Author:

Gunawardene Oneesha H. P.ORCID,Gunathilake Chamila A.,Vikrant KumarORCID,Amaraweera Sumedha M.

Abstract

Due to rapid industrialization and urban development across the globe, the emission of carbon dioxide (CO2) has been significantly increased, resulting in adverse effects on the climate and ecosystems. In this regard, carbon capture and storage (CCS) is considered to be a promising technology in reducing atmospheric CO2 concentration. Among the CO2 capture technologies, adsorption has grabbed significant attention owing to its advantageous characteristics discovered in recent years. Porous carbon-based materials have emerged as one of the most versatile CO2 adsorbents. Numerous research activities have been conducted by synthesizing carbon-based adsorbents using different precursors to investigate their performances towards CCS. Additionally, amine-functionalized carbon-based adsorbents have exhibited remarkable potential for selective capturing of CO2 in the presence of other gases and humidity conditions. The present review describes the CO2 emission sources, health, and environmental impacts of CO2 towards the human beings, options for CCS, and different CO2 separation technologies. Apart from the above, different synthesis routes of carbon-based adsorbents using various precursors have been elucidated. The CO2 adsorption selectivity, capacity, and reusability of the current and applied carbon materials have also been summarized. Furthermore, the critical factors controlling the adsorption performance (e.g., the effect of textural and functional properties) are comprehensively discussed. Finally, the current challenges and future research directions have also been summarized.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3