Mesoscale Observational Analysis of Isolated Convection Associated with the Interaction of the Sea Breeze Front and the Gust Front in the Context of the Urban Heat Humid Island Effect

Author:

Zhang NanORCID,Wang YanORCID,Lin Xiaomeng

Abstract

An isolated convection was unexpectedly initiated in the evening of 1 August 2019 around the Tianjin urban region (TUR), which happened at some distance from the shear line at lower level and the preexisting convection to the South, analyzed by using ERA5 reanalysis data and observations from surface weather stations, and a S-band radar. The results show that, 42 min before the initiation of the convection, the atmospheric thermodynamic conditions around TUR were favorable for the initiation of the isolated convection, although the southerly and vertical shear of the horizontal wind at the lower level was weak. A sea-breeze front approached the TUR and continued to move West, leading to the triggering of the isolated convection in the context of the urban humid heat island (UHHI) effect. Subsequently, the gust front, which was formed between the cold pool away from the TUR and the warm and humid air of the UHHI, moved northward, approached the convection, and collided with sea breeze front, resulting in five reflectivity centers of isolated convection being merged and the convection’s development. Finally, the isolated convection split into two convections that moved away from the TUR and disappeared at 20:36 Beijing Time. The isolated convection was initiated and developed by the interaction of the sea breeze front and gust front in the context of the UHHI effect. The sea breeze front triggered the isolated convection around TUR in the context of the UHHI effect, and the gust front produced by the early convective storms to the south played a vital role in the development of the isolated convection.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Tianjin in China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference55 articles.

1. Mesoscale and Microscale Analysis on a Local Torrential Rain Event in Fragrant Hills Area of Beijing on July 9, 2006;Guo;J. Appl. Meteorol. Sci.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3