Improved Quadrant Analysis for Large-Scale Events Detection in Turbulent Transport

Author:

Wang YeORCID,Wang BaominORCID,Lan ChangxingORCID,Fang RenzhiORCID,Zheng Baofeng,Lu Jieying,Zheng Dan

Abstract

Quadrant analysis has been widely used to investigate the turbulent characteristics in the atmospheric boundary layer (ABL). Although quadrant analysis can identify turbulent structures that contribute significantly to turbulent fluxes, the approach to the hyperbolic hole and its parameter, referred to as hole size, remains uncertain and varies among different studies. This study discusses an improved quadrant analysis with an objective definition of the hole size for the isolation of large coherent structures from small-scale background fluctuations. Eddy covariance data collected 50 m above the grass canopy were used to analyze and evaluate the proposed method. This improved quadrant analysis ensures that the detected large coherent eddies play a dominant role in transporting fluxes, occupying 10% of the total time, with mean flux contributions ranging from 62% to 95% for momentum and 35–104% for scalars. The separated background small-scale eddies are isotropically characterized by a comparable time duration and flux contributions in each quadrant. It is observed that under an unstable atmosphere, large-scale ejections are more active than sweeps, while under stable conditions, they are equally important. Furthermore, mechanical-driven transport under near-neutral conditions only enhances ejection and sweep motions of momentum. In contrast, the buoyancy-driven scenarios under unstable conditions enhance the large-scale activities of sensible heat alone.

Funder

National Natural Science Foundation of China

Guangdong Major Project of Basic and Applied Basic Research

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linkage between surface energy balance non‐closure and horizontal asymmetric turbulent transport;Quarterly Journal of the Royal Meteorological Society;2023-08-31

2. A Quantitative Study of Turbulent Fluxes over a Coastal Station;Boundary-Layer Meteorology;2023-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3