Identifying Crop and Orchard Growing Stages Using Conventional Temperature and Humidity Reports

Author:

Lalić Branislava,Fitzjarrald David R.,Firanj Sremac AnaORCID,Marčić Milena,Petrić MinaORCID

Abstract

Vegetation is a climate modifier: It is a primary modifier, such as the Amazon rain forest, or secondary modifier, such as the agricultural fields of Pannonian lowlands in Central Europe. At periods of winter crop spring renewal and the start of the orchard growing season, enhanced evapotranspiration shifts energy balance partitions from sensible toward latent heat flux. This surface flux alteration converges into the boundary layer, and it can be detected in the daily variations of air temperature and humidity as well as daily temperature range records. The time series of micrometeorological measurements and phenological observations in dominant plant canopies conducted by Forecasting and Reporting Service for Plant Protection of the Republic of Serbia (PIS) are explored to select indices that best record the signatures of plant growth stages in temperature and humidity daily variations. From the timing of extreme values and inflection points of relative humidity (R1 and R2) and normalized daily temperature range (DTR/Td), we identified the following stages: (a) start of flowering (orchard)/spring start of the growing season (crop), (b) full bloom (orchard)/development (crop), (c) maximum LAI reached/yield formation (orchard and crop), and (d) start of dormancy (orchard)/leaf drying (crop). The average day of year (DOY) for dominant plants corresponds to the timing obtained from climatological time series recorded on a representative climate station.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Austrian Climate Research Program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3