Impact of Climate Change on the Yield and Water Footprint of Winter Wheat in the Haihe River Basin, China

Author:

Jia DongdongORCID,Wang Chunying,Han Yuping,Huang Huiping,Xiao HengORCID

Abstract

Climate change can impact the yield and water footprint of crops. Therefore, assessing such impacts carries great significance for regional water and food security. This study validated and verified the variety parameters of winter wheat for the Decision Support System for Agrotechnology Transfer (DSSAT) model, using the long-term (1993–2013) growth and yield data observed from six agricultural experiment stations in the Haihe River Basin (HRB), China. The growth process was simulated under three representative concentration pathways (RCPs), named RCP2.6, RCP4.5, and RCP8.5—climate scenarios driven by the HadGEM2-ES model. The variety parameters of winter wheat showed high accuracy in the simulation of the anthesis and maturity dates, and could be used for long-term prediction of the growth process. The trends of climate change had positive impacts on the water footprint of winter wheat but adverse impacts on the yield. The growing period was shortened by 3.6 days, 4.7 days, and 5.0 days per decade in the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, due to the rapid accumulation of heat. The yield would be increased in lower emissions scenarios (17% in RCP2.6), but decreased in high-emissions scenarios due to high temperatures, which may restrict the growth of wheat. The water footprint was decreased by 10%, 11%, and 13% in the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, indicating that the water-use efficiency could be improved in the future. The results showed broad application prospects of the DSSAT model in simulating the response of crop growth to climate change.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference70 articles.

1. Climate Change: Synthesis Report,2014

2. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernment Panel on Climate Change,2021

3. Global food security under climate change

4. The impacts of climate change on water resources and agriculture in China

5. The impact of climate changes on the water footprint of wheat and maize production in the Nile Delta, Egypt

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3