Comparative Analysis of the Observation Bias and Error Characteristics of AGRI and AHI Data for Land Areas in East Asia

Author:

Wang Shuqing,Qin ZhengkunORCID,Tang Fei

Abstract

Observation bias and error characteristics are the preconditions for the effective assimilation of observation data. In this paper, the bias and error characteristics of the AHI (Advanced Himawari Imager (AHI) and AGRI (Multi-Channel Advanced Geostationary Orbit Radiation Imager (AGRI) data are compared and analyzed, with an emphasis on the observations obtained from land areas. The results show that the observation errors of the two instruments for the ocean area have a good channel consistency over ocean areas, which are all with errors of about 0.6 K; however, the bias and error are significantly affected by the land-surface types and terrain heights over land. For most of the AHI channels, the bias in urban-area bias is smaller than that of those of other surface types, while that of the AGRI data exhibits just the opposite trend, with obviously larger biases in urban areas. However, the observation errors of these two instruments in urban areas are significantly smaller than those of other surface types. The biases of the two instruments do not extensively change much with the terrain height, only slightly decreasing when the height is above 1000 m; however, the observation errors increase obviously with the increase of terrain heights. The difference between the two instruments is that the observation error of the AHI data tends to be stable and stabilizes above 1000 m, while that of the AGRI data is relatively stable below 500 m. The observation errors of the CO2-sensitive channels of the two instruments over the land areas are obviously smaller than those of other near-surface channels, which may indicate that the data obtained in these two CO2 channels have good application prospects for assimilation over land.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3