Regional VOCs Gathering Situation Intelligent Sensing Method Based on Spatial-Temporal Feature Selection

Author:

Dai HongbinORCID,Huang Guangqiu,Wang Jingjing,Zeng HuibinORCID,Zhou Fangyu

Abstract

As VOCs pose a threat to human health, it is important to accurately capture changes in VOCs concentrations and sense VOCs concentrations in relevant areas. Therefore, it is necessary to improve the accuracy of VOCs concentration prediction and realise the VOCs aggregation situation sensing. Firstly, on the basis of regional grid division, the inverse distance spatial interpolation method is used for spatial interpolation to collect regional VOCs data information. Secondly, extreme gradient boosting (XGBoost) is used for spatio-temporal feature selection, combined with graph convolutional neural network (GCN) to construct regional spatial relationships of VOCs, and multiple linear regression (MLR) to process VOCs time series data and predict the VOCs concentration in the grid. Finally, the aggregation potential values of VOCs are calculated based on the prediction results, and the potential perception results are visualised. A VOCs aggregation perception method based on concentration prediction is proposed, using the XGBoost-GCN-MLR method with a scenario-aware approach for VOCs to perceive the VOCs aggregation in the relevant region. VOCs concentration prediction and VOCs aggregation trend perception were carried out in Xi’an, Baoji, Tongchuan, Weinan and Xianyang. The results show that compared with the GCN model, XGBoost model, MLR model and GCN-MLR model, the XGBoost-GCN-MLR model reduces the input variables, achieves the optimisation of the input parameters of the VOCs concentration prediction model, reduces the complexity of the prediction model and improves the prediction accuracy. Intelligent sensing of VOCs aggregation can visualise the regional VOCs. The intelligent sensing of VOCs aggregation can visualise the development trend and status of regional VOCs aggregation and convey more information, which has practical value.

Funder

National Natural Science Foundation of China

Laibin Scientific Research and Technology Development Program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3