Can Arctic Sea Ice Influence the Extremely Cold Days and Nights in Winter over the Tibetan Plateau?

Author:

Jiao Yang,Zhang YuqingORCID,Hu Peng

Abstract

The Arctic, Antarctic, and Tibetan Plateau (TP) are the northernmost, the southernmost, and the highest places of the Earth, respectively, known as Earth’s “three poles”. The Arctic and TP are the “North Pole” and “Third Pole”, and they exert a significant influence on the regional and global climate. This study analyzed the changing characteristics of Arctic sea ice and explored relationships between extreme cold days on the TP and sea ice concentration in the Arctic. From 1979 to 2019, the sea ice concentration of August–October decreased significantly. The low concentration of sea ice leads to a warmer Arctic and causes cold air over the Arctic to be unstable and more likely to move into the southern. Over the TP, the frequent cold air activities lead to more extreme cold events. This article aims to investigate the response characteristics of atmospheric circulation via the NCAR–CAM5.1 model (National Center for Atmospheric Research Community Atmosphere Model, Version 5.1). In order to verify the mechanism of Arctic sea ice concentration impacts on the extreme low temperature of the TP, we designed three experimental plans with different sea ice concentrations and sea surface temperatures (SST). In the two sensitivity experiments, the decrease in sea ice concentration and the increase in SST from August to October in the key areas are amplified simultaneously. The simulation results show that the increases in atmosphere thickness of 950–500 hPa in the Arctic from November to the following February reduce the meridional thickness-gradients between the Arctic and the middle latitudes. The westerly flow in middle–high latitudes weakened. As a result, the polar vortex over the Arctic is more likely to move south. There are negative geopotential height anomalies at 500 hPa over the Arctic and TP and positive anomalies over Eurasia. The anticyclonic system at 500 hPa slightly strengthens in the high latitudes of Eurasia (northerly winds in the TP). Strongly negative anomalies of temperature in the northern parts of the TP generate the cold source. To the north of the TP, the strengthened meridional propagation in middle–high latitudes causes more cold extremes.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

1. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss

2. A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes

3. Albedo evolution of seasonal Arctic sea ice

4. Special Report on the Ocean and Cryosphere in a Changing Climate,2019

5. From the Third Pole to the Arctic: Changes and impacts of the climate and cryosphere;Wang;J. Glaciol. Geocryol.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3