Valley–Mountain Circulation Associated with the Diurnal Cycle of Precipitation in the Tropical Andes (Santa River Basin, Peru)

Author:

Rosales Alan G.,Junquas ClementineORCID,da Rocha Rosmeri P.ORCID,Condom ThomasORCID,Espinoza Jhan-Carlo

Abstract

The Cordillera Blanca (central Andes of Peru) represents the largest concentration of tropical glaciers in the world. The atmospheric processes related to precipitations are still scarcely studied in this region. The main objective of this study is to understand the atmospheric processes of interaction between local and regional scales controlling the diurnal cycle of precipitation over the Santa River basin located between the Cordillera Blanca and the Cordillera Negra. The rainy season (December–March) of 2012–2013 is chosen to perform simulations with the WRF (Weather Research and Forecasting) model, with two domains at 6 km (WRF-6 km) and 2 km (WRF-2 km) horizontal resolutions, forced by ERA5. WRF-2 km precipitation shows a clear improvement over WRF-6 km in terms of the daily mean and diurnal cycle, compared to in situ observations. WRF-2 km shows that the moisture from the Pacific Ocean is a key process modulating the diurnal cycle of precipitation over the Santa River basin in interaction with moisture fluxes from the Amazon basin. In particular, a channeling thermally orographic flow is described as controlling the afternoon precipitation along the Santa valley. In addition, in the highest parts of the Santa River basin (in both cordilleras) and the southern part, maximum precipitation occurs earlier than the lowest parts and the bottom of the valley in the central part of the basin, associated with the intensification of the channeling flow by upslope cross-valley winds during mid-afternoon and its decrease during late afternoon/early night.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3