Spatiotemporal Changes in Precipitation during the Summer Maize Growing Season in the North China Plain and Analysis of Its Causes

Author:

Wang Wei,Tang Shinan,Han Hongbao,Xu Yiting

Abstract

The North China Plain is an important summer maize production region in China. Investigating spatiotemporal variation patterns of precipitation during the summer maize growing season will guide the prevention of droughts and floods and ensure food production. Daily precipitation data during the summer maize growing season in the North China Plain from 1960–2020 were used to analyze spatiotemporal changes in precipitation, examine the migration patterns of precipitation barycenters, and quantitatively analyze the effects of ENSO (El Niño-Southern Oscillation) warm and cold events on precipitation variation characteristics. Results revealed that in the past 61 years, precipitation showed an insignificant decreasing trend; however, there were considerable differences detected in the spatial distribution layouts of precipitation between different developmental stages. The precipitation distribution layout during the sowing–jointing stage was mainly “North–South”, the zero contour was near 36° N, and the other developmental stages were mainly “global” with phases that were the opposite of one another. Moreover, the precipitation barycenter during the jointing–flowering stage showed a significant southward migration. Precipitation during the three developmental stages negatively correlated with warm events, precipitation during the flowering–maturation stage positively correlated with cold events, the relationship between precipitation changes during warm and cold events and the intensity of warm and cold events was not significant, and Pacific Decadal Oscillation (PDO) was the main climatic factor that affected precipitation changes during the summer maize-growing season in the North China Plain.

Funder

National Institute of Natural Hazards, Ministry of Emergency Management of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3