Discovering Precursors to Tropical Cyclone Rapid Intensification in the Atlantic Basin Using Spatiotemporal Data Mining

Author:

Li YunORCID,Yang RuixinORCID,Su HuiORCID,Yang ChaoweiORCID

Abstract

Regarded as one of the most dangerous types of natural disaster, tropical cyclones threaten the life and health of human beings and often cause enormous economic loss. However, intensity forecasting of tropical cyclones, especially rapid intensification forecasting, remains a scientific challenge due to limited understanding regarding the intensity change process. We propose an automatic knowledge discovery framework to identify potential spatiotemporal precursors to tropical cyclone rapid intensification from a set of tropical cyclone environmental fields. Specifically, this framework includes (1) formulating RI and non-RI composite environmental fields from historical tropical cyclones using NASA MERRA2 data; (2) utilizing the shared nearest neighbor-based clustering algorithm to detect regions representing relatively homogeneous behavior around tropical cyclone centers; (3) determining candidate precursors from significantly different regions in RI and non-RI groups using a spatiotemporal statistical method; and (4) comparing candidates to existing predictors to select potential precursors. The proposed knowledge discovery framework is applied separately to different factors, including 200 hPa zonal wind, 850–700 hPa relative humidity, and 850–200 hPa vertical shear, to detect potential precursors. Compared to the existing predictors manually labeled, i.e., U200 and U20C, RHLO, and SHRD in the Statistical Hurricane Intensity Prediction Scheme, our automatically discovered precursors have a comparable or better capability for estimating the probability of rapid intensification.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3