Ionospheric Sounding Based on Spaceborne PolSAR in P-Band

Author:

Guo Wulong,Wang ChengORCID,Zhao Haisheng,Zhang Shaodong,Cao Le,Xiao PengORCID,Liu Lu,Chen Liang,Zhang Yuanyuan

Abstract

The signal of spaceborne low-frequency full-polarization synthetic aperture radar (full-pol SAR) contains abundant ionospheric information. Phased Array L-band Synthetic Aperture Radar (PALSAR) working in the L-band has been verified as an emerging ionospheric sounding technology. Aiming for a future P-band SAR system, this paper investigates the ability of the P-band SAR system in ionospheric one-dimensional and two-dimensional detection. First, considering different systematic error levels, the total electron content (TEC) retrieval in L/P-band is studied by using three typical full-pol SAR data sets based on a circular polarization algorithm. Second, the TEC data retrieved by SAR are fused with the ionosonde, and the joint retrieval of ionospheric electron density is performed. Results show that the P-band TEC retrieval is approximately twice as accurate as the L-band retrieval under the same conditions, and possesses excellent robustness. In addition, the TEC obtained by L/P-band SAR can be used to correct the electron density of the topside on the ionosonde. Results also show that compared with the topside correction accuracy of L-band SAR, that of the P-band SAR is improved by more than 20%. SAR has natural high-resolution characteristics and the P-band signal contains more obvious ionospheric information than the L-band signal. Therefore, future spaceborne P-band SAR has many advantages in two-dimensional fine ionospheric observation and one-dimensional electron density retrieval.

Funder

National Natural Science Foundation of China

National Key Laboratory of Electromagnetic Environment

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3