Snowpack Distribution Using Topographical, Climatological and Winter Season Index Inputs

Author:

Hultstrand Douglas M.ORCID,Fassnacht Steven R.ORCID,Stednick John D.,Hiemstra Christopher A.ORCID

Abstract

A majority of the annual precipitation in many mountains falls as snow, and obtaining accurate estimates of the amount of water stored within the snowpack is important for water supply forecasting. Mountain topography can produce complex patterns of snow distribution, accumulation, and ablation, yet the interaction of topography and meteorological patterns tends to generate similar inter-annual snow depth distribution patterns. Here, we question whether snow depth patterns at or near peak accumulation are repeatable for a 10-year time frame and whether years with limited snow depth measurement can still be used to accurately represent snow depth and mean snow depth. We used snow depth measurements from the West Glacier Lake watershed, Wyoming, USA, to investigate the distribution of snow depth. West Glacier Lake is a small (0.61 km2) windswept (mean of 8 m/s) watershed that ranges between 3277 m and 3493 m. Three interpolation methods were compared: (1) a binary regression tree, (2) multiple linear regression, and (3) generalized additive models. Generalized additive models using topographic parameters with measured snow depth presented the best estimates of the snow depth distribution and the basin mean amounts. The snow depth patterns near peak accumulation were found to be consistent inter-annually with an average annual correlation coefficient (r2) of 0.83, and scalable based on a winter season accumulation index (r2 = 0.75) based on the correlation between mean snow depth measurements to Brooklyn Lake snow telemetry (SNOTEL) snow depth data.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3